Snow Crab and Northern Shrimp Aeroallergens and Toxic Gases in Holds and on Decks of Newfoundland Coastal Fleet Fishing Vessels

Anas M. Abdel Rahman, PhD1*, Judith Read Guernsey, PhD2, Matthew Seaboyer, MREM3, Robert Helleur, PhD1

1Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X7, Canada, 2Department of Community Health and Epidemiology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 1V7, Canada, 3Department of Environment, Government of Nova Scotia, Halifax, Nova Scotia, B3J 2P8, Canada
Sampling platform and targeted locations in NL

VRAE and weather station

ChemComb 47mm Teflon filter
<table>
<thead>
<tr>
<th>#</th>
<th>L</th>
<th>W</th>
<th>D</th>
<th>Year Built</th>
<th>Holds</th>
<th>Capacity of Hold</th>
<th>Vessel Crew Size</th>
<th>Characteristics of Trip Catch</th>
<th>Trip Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11.3</td>
<td>5.5</td>
<td>1.8</td>
<td>2004</td>
<td>1</td>
<td>18000</td>
<td>3 3 1</td>
<td>crab crab N</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>14.3</td>
<td>5.4</td>
<td>1.8</td>
<td>1993</td>
<td>1</td>
<td>24000</td>
<td>4 3 1</td>
<td>crab crab N</td>
<td>41</td>
</tr>
<tr>
<td>3</td>
<td>11.9</td>
<td>4.5</td>
<td>1.2</td>
<td>1984</td>
<td>1</td>
<td>16000</td>
<td>4 3 1</td>
<td>crab crab N</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>15.8</td>
<td>6.4</td>
<td>3.1</td>
<td>2006</td>
<td>1</td>
<td>100000</td>
<td>6 3 2</td>
<td>crab crab N</td>
<td>28</td>
</tr>
<tr>
<td>5</td>
<td>10.4</td>
<td>4.3</td>
<td>1.2</td>
<td>2005</td>
<td>1</td>
<td>6000</td>
<td>3 3 1</td>
<td>crab crab capelin 6000 13</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>20.4</td>
<td>6.7</td>
<td>3</td>
<td>2001</td>
<td>1</td>
<td>42000</td>
<td>6 5 2</td>
<td>crab shrimp N NR 74</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>19.5</td>
<td>7.6</td>
<td>3</td>
<td>2000</td>
<td>1</td>
<td>42000</td>
<td>6 5 4</td>
<td>shrimp shrimp N 19000 151</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>16.5</td>
<td>6.7</td>
<td>2.7</td>
<td>2000</td>
<td>1</td>
<td>80000</td>
<td>5 4 2</td>
<td>shrimp shrimp N 25000 88</td>
<td></td>
</tr>
</tbody>
</table>

N= no, NR = not recorded, SCTM = Snow Crab Tropomyosin, LOQ: lower limit of quantification
Toxic Gas Detection

FV-001, FV-002, FV-003, FV-004, FV-005, FV-007, FV-008, FV-009

Sampling duration (hr)

O₂ (%)
Snow crab MS profiling for the pool of filter extract

![Graph showing MS profiling with peaks for different proteins](image_url)

- **Tropomyosin**
- **Actin**
- **Arginine kinase**
- **Troponin**
Average of 6 days

- **d3-SCAK**: 7.10
- **SCAK**: 7.14
- **d9-SCTM**: 7.23
- **SCTM**: 7.28
Northern Shrimp TM

SCTM concentration (pg/m³)

Vessel #

Deck
Hold

0 100 200 300 400

7 9
Conclusion

- Mass spectrometry strategy has been successfully used for novel allergen discovery

- Tropomyosin and arginine kinase are the major crustacean aeroallergens

- Aeroallergen levels accurately determined in workplaces environment using mass spectrometry

- The proteomics quantitation approach can be utilized to study different aeroallergens simultaneously

- Arginine kinase has been reported for the first time to be aeroallergen with significantly high activity levels
Acknowledgements

Supervisory committee

- Prof. Robert Helleur (Supervisor)
- Prof. John Robinson (Co-supervisor)
- Dr. Travis Fridgen (Member)

RMIT University, Australia

- Dr. Andreas Lopata
- Mr. Sandip Kamath

Alfred Hospital and Monash University, Australia

- Prof. Robyn O’Hehir

Eastern Health

- Dr. Edward Randell

SafetyNet Centre for Occupational Health & Safety Research

- Dr. Barbra Neis

Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST)

- Sébastien Gagne`